본문바로가기

Publications

Prof. Zonghoon Lee’s Atomic-Scale Electron Microscopy Lab

Publications

Link to Google Scholar


Publications in Nature | Science | their sister journals


Nature 2024 /  Nature Communications, 14:4747, 2023 / Nature Communications, 13:4916, 2022 / Nature Communications, 13:2759, 2022 / Nature, 596, 519-524, 2021 Nature, 582, 511-514, 2020 / Nature Nanotechnology, 15, 289-295, 2020 / Nature Nanotechnology, 15, 59-66, 2020 / Science Advances, 6 (10), eaay4958, 2020 / Nature Electronics, 3, 207-215, 2020 / Nature Communications, 11 (1437), 2020 / Nature Energy, 3, 773-782, 2018 / Nature Communications, 8:1549, 2017 / Nature Communications, 6:8294, 2015 / Nature Communications, 6:7817, 2015 / Nature Communications, 5:3383, 2014 






- Editor’s Choice: van der Waals heterostructures  


Abstract


 The recent emergence of vertically stacked van der Waals (vdW) heterostructures provides new opportunities for these materials to be employed in a wide range of novel applications. Understanding the interlayer coupling in the stacking geometries of the heterostructures and its effect on the resultant material properties is particularly important for obtaining materials with desirable properties. Here, we report that the atomic bonding between stacked layers and thereby the interlayer properties of the vdW heterostructures can be well tuned by the substrate surface defects using WS​2 flakes directly grown on graphene. We show that the defects of graphene have no significant effect on the crystal structure or the quality of the grown WS​2 flakes; however, they have a strong influence on the interlayer interactions between stacked layers, thus affecting the layer deformability, thermal stability, and physical and electrical properties. Our experimental and computational investigations also reveal that WS​2 flakes grown on graphene defects form covalent bonds with the underlying graphene via W atomic bridges (i.e., formation of larger overlapping hybrid orbitals), enabling these flakes to exhibit different intrinsic properties, such as higher conductivity and improved contact characteristics than heterostructures that have vdW interactions with graphene. This result emphasizes the importance of understanding the interlayer coupling in the stacking geometries and its correlation effect for designing desirable properties.

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

Prior to Joining UNIST, 2011

TOP