본문바로가기

Publications

Prof. Zonghoon Lee’s Atomic-Scale Electron Microscopy Lab

Publications

Link to Google Scholar


Publications in Nature | Science | their sister journals


Nature 2024 /  Nature Communications, 14:4747, 2023 / Nature Communications, 13:4916, 2022 / Nature Communications, 13:2759, 2022 / Nature, 596, 519-524, 2021 Nature, 582, 511-514, 2020 / Nature Nanotechnology, 15, 289-295, 2020 / Nature Nanotechnology, 15, 59-66, 2020 / Science Advances, 6 (10), eaay4958, 2020 / Nature Electronics, 3, 207-215, 2020 / Nature Communications, 11 (1437), 2020 / Nature Energy, 3, 773-782, 2018 / Nature Communications, 8:1549, 2017 / Nature Communications, 6:8294, 2015 / Nature Communications, 6:7817, 2015 / Nature Communications, 5:3383, 2014 






Abstract


 The process of oxidation of a copper surface coated by a layer of graphene in water-saturated air at 50 °C was studied where it was observed that oxidation started at the graphene edge and was complete after 24 h. Isotope labeling of the oxygen gas and water showed that the oxygen in the formed copper oxides originated from water and not from the oxygen in air for both Cu and graphene-coated Cu, and this has interesting potential implications for graphene as a protective coating for Cu in dry air conditions. We propose a reaction pathway where surface hydroxyl groups formed at graphene edges and defects induce the oxidation of Cu. DFT simulation shows that the binding energy between graphene and the oxidized Cu substrate is smaller than that for the bare Cu substrate, which facilitates delamination of the graphene. Using this process, dry transfer is demonstrated using poly(bisphenol A carbonate) (PC) as the support layer. The high quality of the transferred graphene is demonstrated from Raman maps, XPS, STM, TEM, and sheet resistance measurements. The copper foil substrate was reused without substantial weight loss to grow graphene (up to 3 cycles) of equal quality to the first growth after each cycle. It was found that dry transfer yielded graphene with less Cu impurities as compared to methods using etching of the Cu substrate. Using PC yielded graphene with less polymeric residue after transfer than the use of poly(methyl methacrylate) (PMMA) as the supporting layer. Hence, this dry and clean delamination technique for CVD graphene grown on copper substrates is highly advantageous for the cost-effective large-scale production of graphene, where the Cu substrate can be reused after each growth. 

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

Prior to Joining UNIST, 2011

TOP