본문바로가기

Publications

Prof. Zonghoon Lee’s Atomic-Scale Electron Microscopy Lab

Publications

Link to Google Scholar


Publications in Nature | Science | their sister journals


Nature 2024 /  Nature Communications, 14:4747, 2023 / Nature Communications, 13:4916, 2022 / Nature Communications, 13:2759, 2022 / Nature, 596, 519-524, 2021 Nature, 582, 511-514, 2020 / Nature Nanotechnology, 15, 289-295, 2020 / Nature Nanotechnology, 15, 59-66, 2020 / Science Advances, 6 (10), eaay4958, 2020 / Nature Electronics, 3, 207-215, 2020 / Nature Communications, 11 (1437), 2020 / Nature Energy, 3, 773-782, 2018 / Nature Communications, 8:1549, 2017 / Nature Communications, 6:8294, 2015 / Nature Communications, 6:7817, 2015 / Nature Communications, 5:3383, 2014 






Abstract


 The growth of high-quality graphene on copper substrates has been intensively investigated using chemical vapor deposition (CVD). It, however, has been considered that the growth mechanism is different when graphene is synthesized using a plasma CVD. In this study, we demonstrate a dual role of hydrogen for the graphene growth on copper using an inductively coupled plasma (ICP) CVD. Hydrogen activates surface-bound carbon for the growth of high-quality monolayer graphene. In contrast, the role of an etchant is to manipulate the distribution of the graphene grains, which significantly depends on the plasma power. Atomic-resolution transmission electron microscopy study enables the mapping of graphene grains, which uncovers the distribution of grains and the number of graphene layers depending on the plasma power. In addition, the variation of electronic properties of the synthesized graphene relies on the plasma power.

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

Prior to Joining UNIST, 2011

TOP