본문바로가기

Publications

Prof. Zonghoon Lee’s Atomic-Scale Electron Microscopy Lab

Publications

Link to Google Scholar


Publications in Nature | Science | their sister journals


Nature 2024 /  Nature Communications, 14:4747, 2023 / Nature Communications, 13:4916, 2022 / Nature Communications, 13:2759, 2022 / Nature, 596, 519-524, 2021 Nature, 582, 511-514, 2020 / Nature Nanotechnology, 15, 289-295, 2020 / Nature Nanotechnology, 15, 59-66, 2020 / Science Advances, 6 (10), eaay4958, 2020 / Nature Electronics, 3, 207-215, 2020 / Nature Communications, 11 (1437), 2020 / Nature Energy, 3, 773-782, 2018 / Nature Communications, 8:1549, 2017 / Nature Communications, 6:8294, 2015 / Nature Communications, 6:7817, 2015 / Nature Communications, 5:3383, 2014 






Abstract


 The process of encapsulating cobalt nanoparticles using graphene layers is mainly direct pyrolysis. The encapsulation structure of hybrids prepared in this way improves the catalyst stability, which greatly reduces the leaching of non-metals and prevents metal nanoparticles from growing beyond a certain size. In this study, cobalt particles surrounded by graphene layers were formed by increasing the temperature in a transmission electron microscope, and they were analyzed using scanning transmission electron microscopy (STEM). Synthesized cobalt hydroxide nanosheets were used to obtain cobalt particles using an in-situ heating holder inside a TEM column. The cobalt nanoparticles are surrounded by layers of graphene, and the number of layers increases as the temperature increases. The interlayer spacing of the graphene layers was also investigated using atomic imaging. The success achieved in the encapsulation of metallic nanoparticles in graphene layers paves the way for the design of highly active and reusable heterogeneous catalysts for more challenging molecules. 

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

Prior to Joining UNIST, 2011

TOP